$
\newcommand{\Ua}{\mathrm{a}}
\newcommand{\Ub}{\mathrm{b}}
\newcommand{\Uc}{\mathrm{c}}
\newcommand{\Ud}{\mathrm{d}}
\newcommand{\Ue}{\mathrm{e}}
\newcommand{\Uf}{\mathrm{f}}
\newcommand{\Ug}{\mathrm{g}}
\newcommand{\Uh}{\mathrm{h}}
\newcommand{\Ui}{\mathrm{i}}
\newcommand{\Uj}{\mathrm{j}}
\newcommand{\Uk}{\mathrm{k}}
\newcommand{\Ul}{\mathrm{l}}
\newcommand{\Um}{\mathrm{m}}
\newcommand{\Un}{\mathrm{n}}
\newcommand{\Uo}{\mathrm{o}}
\newcommand{\Up}{\mathrm{p}}
\newcommand{\Uq}{\mathrm{q}}
\newcommand{\Ur}{\mathrm{r}}
\newcommand{\Us}{\mathrm{s}}
\newcommand{\Ut}{\mathrm{t}}
\newcommand{\Uu}{\mathrm{u}}
\newcommand{\Uv}{\mathrm{v}}
\newcommand{\Uw}{\mathrm{w}}
\newcommand{\Ux}{\mathrm{x}}
\newcommand{\Uy}{\mathrm{y}}
\newcommand{\Uz}{\mathrm{z}}
\newcommand{\UA}{\mathrm{A}}
\newcommand{\UB}{\mathrm{B}}
\newcommand{\UC}{\mathrm{C}}
\newcommand{\UD}{\mathrm{D}}
\newcommand{\UE}{\mathrm{E}}
\newcommand{\UF}{\mathrm{F}}
\newcommand{\UG}{\mathrm{G}}
\newcommand{\UH}{\mathrm{H}}
\newcommand{\UI}{\mathrm{I}}
\newcommand{\UJ}{\mathrm{J}}
\newcommand{\UK}{\mathrm{K}}
\newcommand{\UL}{\mathrm{L}}
\newcommand{\UM}{\mathrm{M}}
\newcommand{\UN}{\mathrm{N}}
\newcommand{\UO}{\mathrm{O}}
\newcommand{\UP}{\mathrm{P}}
\newcommand{\UQ}{\mathrm{Q}}
\newcommand{\UR}{\mathrm{R}}
\newcommand{\US}{\mathrm{S}}
\newcommand{\UT}{\mathrm{T}}
\newcommand{\UU}{\mathrm{U}}
\newcommand{\UV}{\mathrm{V}}
\newcommand{\UW}{\mathrm{W}}
\newcommand{\UX}{\mathrm{X}}
\newcommand{\UY}{\mathrm{Y}}
\newcommand{\UZ}{\mathrm{Z}}
%
\newcommand{\Uzero }{\mathrm{0}}
\newcommand{\Uone }{\mathrm{1}}
\newcommand{\Utwo }{\mathrm{2}}
\newcommand{\Uthree}{\mathrm{3}}
\newcommand{\Ufour }{\mathrm{4}}
\newcommand{\Ufive }{\mathrm{5}}
\newcommand{\Usix }{\mathrm{6}}
\newcommand{\Useven}{\mathrm{7}}
\newcommand{\Ueight}{\mathrm{8}}
\newcommand{\Unine }{\mathrm{9}}
%
\newcommand{\Ja}{\mathit{a}}
\newcommand{\Jb}{\mathit{b}}
\newcommand{\Jc}{\mathit{c}}
\newcommand{\Jd}{\mathit{d}}
\newcommand{\Je}{\mathit{e}}
\newcommand{\Jf}{\mathit{f}}
\newcommand{\Jg}{\mathit{g}}
\newcommand{\Jh}{\mathit{h}}
\newcommand{\Ji}{\mathit{i}}
\newcommand{\Jj}{\mathit{j}}
\newcommand{\Jk}{\mathit{k}}
\newcommand{\Jl}{\mathit{l}}
\newcommand{\Jm}{\mathit{m}}
\newcommand{\Jn}{\mathit{n}}
\newcommand{\Jo}{\mathit{o}}
\newcommand{\Jp}{\mathit{p}}
\newcommand{\Jq}{\mathit{q}}
\newcommand{\Jr}{\mathit{r}}
\newcommand{\Js}{\mathit{s}}
\newcommand{\Jt}{\mathit{t}}
\newcommand{\Ju}{\mathit{u}}
\newcommand{\Jv}{\mathit{v}}
\newcommand{\Jw}{\mathit{w}}
\newcommand{\Jx}{\mathit{x}}
\newcommand{\Jy}{\mathit{y}}
\newcommand{\Jz}{\mathit{z}}
\newcommand{\JA}{\mathit{A}}
\newcommand{\JB}{\mathit{B}}
\newcommand{\JC}{\mathit{C}}
\newcommand{\JD}{\mathit{D}}
\newcommand{\JE}{\mathit{E}}
\newcommand{\JF}{\mathit{F}}
\newcommand{\JG}{\mathit{G}}
\newcommand{\JH}{\mathit{H}}
\newcommand{\JI}{\mathit{I}}
\newcommand{\JJ}{\mathit{J}}
\newcommand{\JK}{\mathit{K}}
\newcommand{\JL}{\mathit{L}}
\newcommand{\JM}{\mathit{M}}
\newcommand{\JN}{\mathit{N}}
\newcommand{\JO}{\mathit{O}}
\newcommand{\JP}{\mathit{P}}
\newcommand{\JQ}{\mathit{Q}}
\newcommand{\JR}{\mathit{R}}
\newcommand{\JS}{\mathit{S}}
\newcommand{\JT}{\mathit{T}}
\newcommand{\JU}{\mathit{U}}
\newcommand{\JV}{\mathit{V}}
\newcommand{\JW}{\mathit{W}}
\newcommand{\JX}{\mathit{X}}
\newcommand{\JY}{\mathit{Y}}
\newcommand{\JZ}{\mathit{Z}}
%
\newcommand{\Jzero }{\mathit{0}}
\newcommand{\Jone }{\mathit{1}}
\newcommand{\Jtwo }{\mathit{2}}
\newcommand{\Jthree}{\mathit{3}}
\newcommand{\Jfour }{\mathit{4}}
\newcommand{\Jfive }{\mathit{5}}
\newcommand{\Jsix }{\mathit{6}}
\newcommand{\Jseven}{\mathit{7}}
\newcommand{\Jeight}{\mathit{8}}
\newcommand{\Jnine }{\mathit{9}}
%
\newcommand{\BA}{\boldsymbol{A}}
\newcommand{\BB}{\boldsymbol{B}}
\newcommand{\BC}{\boldsymbol{C}}
\newcommand{\BD}{\boldsymbol{D}}
\newcommand{\BE}{\boldsymbol{E}}
\newcommand{\BF}{\boldsymbol{F}}
\newcommand{\BG}{\boldsymbol{G}}
\newcommand{\BH}{\boldsymbol{H}}
\newcommand{\BI}{\boldsymbol{I}}
\newcommand{\BJ}{\boldsymbol{J}}
\newcommand{\BK}{\boldsymbol{K}}
\newcommand{\BL}{\boldsymbol{L}}
\newcommand{\BM}{\boldsymbol{M}}
\newcommand{\BN}{\boldsymbol{N}}
\newcommand{\BO}{\boldsymbol{O}}
\newcommand{\BP}{\boldsymbol{P}}
\newcommand{\BQ}{\boldsymbol{Q}}
\newcommand{\BR}{\boldsymbol{R}}
\newcommand{\BS}{\boldsymbol{S}}
\newcommand{\BT}{\boldsymbol{T}}
\newcommand{\BU}{\boldsymbol{U}}
\newcommand{\BV}{\boldsymbol{V}}
\newcommand{\BW}{\boldsymbol{W}}
\newcommand{\BX}{\boldsymbol{X}}
\newcommand{\BY}{\boldsymbol{Y}}
\newcommand{\BZ}{\boldsymbol{Z}}
\newcommand{\Ba}{\boldsymbol{a}}
\newcommand{\Bb}{\boldsymbol{b}}
\newcommand{\Bc}{\boldsymbol{c}}
\newcommand{\Bd}{\boldsymbol{d}}
\newcommand{\Be}{\boldsymbol{e}}
\newcommand{\Bf}{\boldsymbol{f}}
\newcommand{\Bg}{\boldsymbol{g}}
\newcommand{\Bh}{\boldsymbol{h}}
\newcommand{\Bi}{\boldsymbol{i}}
\newcommand{\Bj}{\boldsymbol{j}}
\newcommand{\Bk}{\boldsymbol{k}}
\newcommand{\Bl}{\boldsymbol{l}}
\newcommand{\Bm}{\boldsymbol{m}}
\newcommand{\Bn}{\boldsymbol{n}}
\newcommand{\Bo}{\boldsymbol{o}}
\newcommand{\Bp}{\boldsymbol{p}}
\newcommand{\Bq}{\boldsymbol{q}}
\newcommand{\Br}{\boldsymbol{r}}
\newcommand{\Bs}{\boldsymbol{s}}
\newcommand{\Bt}{\boldsymbol{t}}
\newcommand{\Bu}{\boldsymbol{u}}
\newcommand{\Bv}{\boldsymbol{v}}
\newcommand{\Bw}{\boldsymbol{w}}
\newcommand{\Bx}{\boldsymbol{x}}
\newcommand{\By}{\boldsymbol{y}}
\newcommand{\Bz}{\boldsymbol{z}}
%
\newcommand{\Bzero }{\boldsymbol{0}}
\newcommand{\Bone }{\boldsymbol{1}}
\newcommand{\Btwo }{\boldsymbol{2}}
\newcommand{\Bthree}{\boldsymbol{3}}
\newcommand{\Bfour }{\boldsymbol{4}}
\newcommand{\Bfive }{\boldsymbol{5}}
\newcommand{\Bsix }{\boldsymbol{6}}
\newcommand{\Bseven}{\boldsymbol{7}}
\newcommand{\Beight}{\boldsymbol{8}}
\newcommand{\Bnine }{\boldsymbol{9}}
%
\newcommand{\Balpha }{\boldsymbol{\alpha} }
\newcommand{\Bbeta }{\boldsymbol{\beta} }
\newcommand{\Bgamma }{\boldsymbol{\gamma} }
\newcommand{\Bdelta }{\boldsymbol{\delta} }
\newcommand{\Bepsilon}{\boldsymbol{\epsilon} }
\newcommand{\Bvareps }{\boldsymbol{\varepsilon} }
\newcommand{\Bvarepsilon}{\boldsymbol{\varepsilon}}
\newcommand{\Bzeta }{\boldsymbol{\zeta} }
\newcommand{\Beta }{\boldsymbol{\eta} }
\newcommand{\Btheta }{\boldsymbol{\theta} }
\newcommand{\Bvarthe }{\boldsymbol{\vartheta} }
\newcommand{\Biota }{\boldsymbol{\iota} }
\newcommand{\Bkappa }{\boldsymbol{\kappa} }
\newcommand{\Blambda }{\boldsymbol{\lambda} }
\newcommand{\Bmu }{\boldsymbol{\mu} }
\newcommand{\Bnu }{\boldsymbol{\nu} }
\newcommand{\Bxi }{\boldsymbol{\xi} }
\newcommand{\Bpi }{\boldsymbol{\pi} }
\newcommand{\Brho }{\boldsymbol{\rho} }
\newcommand{\Bvrho }{\boldsymbol{\varrho} }
\newcommand{\Bsigma }{\boldsymbol{\sigma} }
\newcommand{\Bvsigma }{\boldsymbol{\varsigma} }
\newcommand{\Btau }{\boldsymbol{\tau} }
\newcommand{\Bupsilon}{\boldsymbol{\upsilon} }
\newcommand{\Bphi }{\boldsymbol{\phi} }
\newcommand{\Bvarphi }{\boldsymbol{\varphi} }
\newcommand{\Bchi }{\boldsymbol{\chi} }
\newcommand{\Bpsi }{\boldsymbol{\psi} }
\newcommand{\Bomega }{\boldsymbol{\omega} }
\newcommand{\BGamma }{\boldsymbol{\Gamma} }
\newcommand{\BDelta }{\boldsymbol{\Delta} }
\newcommand{\BTheta }{\boldsymbol{\Theta} }
\newcommand{\BLambda }{\boldsymbol{\Lambda} }
\newcommand{\BXi }{\boldsymbol{\Xi} }
\newcommand{\BPi }{\boldsymbol{\Pi} }
\newcommand{\BSigma }{\boldsymbol{\Sigma} }
\newcommand{\BUpsilon}{\boldsymbol{\Upsilon} }
\newcommand{\BPhi }{\boldsymbol{\Phi} }
\newcommand{\BPsi }{\boldsymbol{\Psi} }
\newcommand{\BOmega }{\boldsymbol{\Omega} }
%
\newcommand{\IA}{\mathbb{A}}
\newcommand{\IB}{\mathbb{B}}
\newcommand{\IC}{\mathbb{C}}
\newcommand{\ID}{\mathbb{D}}
\newcommand{\IE}{\mathbb{E}}
\newcommand{\IF}{\mathbb{F}}
\newcommand{\IG}{\mathbb{G}}
\newcommand{\IH}{\mathbb{H}}
\newcommand{\II}{\mathbb{I}}
\renewcommand{\IJ}{\mathbb{J}}
\newcommand{\IK}{\mathbb{K}}
\newcommand{\IL}{\mathbb{L}}
\newcommand{\IM}{\mathbb{M}}
\newcommand{\IN}{\mathbb{N}}
\newcommand{\IO}{\mathbb{O}}
\newcommand{\IP}{\mathbb{P}}
\newcommand{\IQ}{\mathbb{Q}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IS}{\mathbb{S}}
\newcommand{\IT}{\mathbb{T}}
\newcommand{\IU}{\mathbb{U}}
\newcommand{\IV}{\mathbb{V}}
\newcommand{\IW}{\mathbb{W}}
\newcommand{\IX}{\mathbb{X}}
\newcommand{\IY}{\mathbb{Y}}
\newcommand{\IZ}{\mathbb{Z}}
%
\newcommand{\FA}{\mathsf{A}}
\newcommand{\FB}{\mathsf{B}}
\newcommand{\FC}{\mathsf{C}}
\newcommand{\FD}{\mathsf{D}}
\newcommand{\FE}{\mathsf{E}}
\newcommand{\FF}{\mathsf{F}}
\newcommand{\FG}{\mathsf{G}}
\newcommand{\FH}{\mathsf{H}}
\newcommand{\FI}{\mathsf{I}}
\newcommand{\FJ}{\mathsf{J}}
\newcommand{\FK}{\mathsf{K}}
\newcommand{\FL}{\mathsf{L}}
\newcommand{\FM}{\mathsf{M}}
\newcommand{\FN}{\mathsf{N}}
\newcommand{\FO}{\mathsf{O}}
\newcommand{\FP}{\mathsf{P}}
\newcommand{\FQ}{\mathsf{Q}}
\newcommand{\FR}{\mathsf{R}}
\newcommand{\FS}{\mathsf{S}}
\newcommand{\FT}{\mathsf{T}}
\newcommand{\FU}{\mathsf{U}}
\newcommand{\FV}{\mathsf{V}}
\newcommand{\FW}{\mathsf{W}}
\newcommand{\FX}{\mathsf{X}}
\newcommand{\FY}{\mathsf{Y}}
\newcommand{\FZ}{\mathsf{Z}}
\newcommand{\Fa}{\mathsf{a}}
\newcommand{\Fb}{\mathsf{b}}
\newcommand{\Fc}{\mathsf{c}}
\newcommand{\Fd}{\mathsf{d}}
\newcommand{\Fe}{\mathsf{e}}
\newcommand{\Ff}{\mathsf{f}}
\newcommand{\Fg}{\mathsf{g}}
\newcommand{\Fh}{\mathsf{h}}
\newcommand{\Fi}{\mathsf{i}}
\newcommand{\Fj}{\mathsf{j}}
\newcommand{\Fk}{\mathsf{k}}
\newcommand{\Fl}{\mathsf{l}}
\newcommand{\Fm}{\mathsf{m}}
\newcommand{\Fn}{\mathsf{n}}
\newcommand{\Fo}{\mathsf{o}}
\newcommand{\Fp}{\mathsf{p}}
\newcommand{\Fq}{\mathsf{q}}
\newcommand{\Fr}{\mathsf{r}}
\newcommand{\Fs}{\mathsf{s}}
\newcommand{\Ft}{\mathsf{t}}
\newcommand{\Fu}{\mathsf{u}}
\newcommand{\Fv}{\mathsf{v}}
\newcommand{\Fw}{\mathsf{w}}
\newcommand{\Fx}{\mathsf{x}}
\newcommand{\Fy}{\mathsf{y}}
\newcommand{\Fz}{\mathsf{z}}
%
\newcommand{\Fzero }{\mathsf{0}}
\newcommand{\Fone }{\mathsf{1}}
\newcommand{\Ftwo }{\mathsf{2}}
\newcommand{\Fthree}{\mathsf{3}}
\newcommand{\Ffour }{\mathsf{4}}
\newcommand{\Ffive }{\mathsf{5}}
\newcommand{\Fsix }{\mathsf{6}}
\newcommand{\Fseven}{\mathsf{7}}
\newcommand{\Feight}{\mathsf{8}}
\newcommand{\Fnine }{\mathsf{9}}
%
\newcommand{\CA}{\mathcal{A}}
\newcommand{\CB}{\mathcal{B}}
\newcommand{\CC}{\mathcal{C}}
\newcommand{\CD}{\mathcal{D}}
\newcommand{\CE}{\mathcal{E}}
\newcommand{\CF}{\mathcal{F}}
\newcommand{\CG}{\mathcal{G}}
\newcommand{\CH}{\mathcal{H}}
\newcommand{\CI}{\mathcal{I}}
\newcommand{\CJ}{\mathcal{J}}
\newcommand{\CK}{\mathcal{K}}
\newcommand{\CL}{\mathcal{L}}
\newcommand{\CM}{\mathcal{M}}
\newcommand{\CN}{\mathcal{N}}
\newcommand{\CO}{\mathcal{O}}
\newcommand{\CP}{\mathcal{P}}
\newcommand{\CQ}{\mathcal{Q}}
\newcommand{\CR}{\mathcal{R}}
\newcommand{\CS}{\mathcal{S}}
\newcommand{\CT}{\mathcal{T}}
\newcommand{\CU}{\mathcal{U}}
\newcommand{\CV}{\mathcal{V}}
\newcommand{\CW}{\mathcal{W}}
\newcommand{\CX}{\mathcal{X}}
\newcommand{\CY}{\mathcal{Y}}
\newcommand{\CZ}{\mathcal{Z}}
%
\newcommand{\KA}{\mathfrak{A}}
\newcommand{\KB}{\mathfrak{B}}
\newcommand{\KC}{\mathfrak{C}}
\newcommand{\KD}{\mathfrak{D}}
\newcommand{\KE}{\mathfrak{E}}
\newcommand{\KF}{\mathfrak{F}}
\newcommand{\KG}{\mathfrak{G}}
\newcommand{\KH}{\mathfrak{H}}
\newcommand{\KI}{\mathfrak{I}}
\newcommand{\KJ}{\mathfrak{J}}
\newcommand{\KK}{\mathfrak{K}}
\newcommand{\KL}{\mathfrak{L}}
\newcommand{\KM}{\mathfrak{M}}
\newcommand{\KN}{\mathfrak{N}}
\newcommand{\KO}{\mathfrak{O}}
\newcommand{\KP}{\mathfrak{P}}
\newcommand{\KQ}{\mathfrak{Q}}
\newcommand{\KR}{\mathfrak{R}}
\newcommand{\KS}{\mathfrak{S}}
\newcommand{\KT}{\mathfrak{T}}
\newcommand{\KU}{\mathfrak{U}}
\newcommand{\KV}{\mathfrak{V}}
\newcommand{\KW}{\mathfrak{W}}
\newcommand{\KX}{\mathfrak{X}}
\newcommand{\KY}{\mathfrak{Y}}
\newcommand{\KZ}{\mathfrak{Z}}
\newcommand{\Ka}{\mathfrak{a}}
\newcommand{\Kb}{\mathfrak{b}}
\newcommand{\Kc}{\mathfrak{c}}
\newcommand{\Kd}{\mathfrak{d}}
\newcommand{\Ke}{\mathfrak{e}}
\newcommand{\Kf}{\mathfrak{f}}
\newcommand{\Kg}{\mathfrak{g}}
\newcommand{\Kh}{\mathfrak{h}}
\newcommand{\Ki}{\mathfrak{i}}
\newcommand{\Kj}{\mathfrak{j}}
\newcommand{\Kk}{\mathfrak{k}}
\newcommand{\Kl}{\mathfrak{l}}
\newcommand{\Km}{\mathfrak{m}}
\newcommand{\Kn}{\mathfrak{n}}
\newcommand{\Ko}{\mathfrak{o}}
\newcommand{\Kp}{\mathfrak{p}}
\newcommand{\Kq}{\mathfrak{q}}
\newcommand{\Kr}{\mathfrak{r}}
\newcommand{\Ks}{\mathfrak{s}}
\newcommand{\Kt}{\mathfrak{t}}
\newcommand{\Ku}{\mathfrak{u}}
\newcommand{\Kv}{\mathfrak{v}}
\newcommand{\Kw}{\mathfrak{w}}
\newcommand{\Kx}{\mathfrak{x}}
\newcommand{\Ky}{\mathfrak{y}}
\newcommand{\Kz}{\mathfrak{z}}
%
\newcommand{\Kzero }{\mathfrak{0}}
\newcommand{\Kone }{\mathfrak{1}}
\newcommand{\Ktwo }{\mathfrak{2}}
\newcommand{\Kthree}{\mathfrak{3}}
\newcommand{\Kfour }{\mathfrak{4}}
\newcommand{\Kfive }{\mathfrak{5}}
\newcommand{\Ksix }{\mathfrak{6}}
\newcommand{\Kseven}{\mathfrak{7}}
\newcommand{\Keight}{\mathfrak{8}}
\newcommand{\Knine }{\mathfrak{9}}
%
$
$
\newcommand{\Lin}{\mathop{\rm Lin}\nolimits}
\newcommand{\modop}{\mathop{\rm mod}\nolimits}
\renewcommand{\div}{\mathop{\rm div}\nolimits}
\newcommand{\Var}{\Delta}
\newcommand{\evat}{\bigg|}
\newcommand\varn[3]{D_{#2}#1\cdot #3}
\newcommand{\dtp}{\cdot}
\newcommand{\dyd}{\otimes}
\newcommand{\tra}{^T}
\newcommand{\del}{\partial}
\newcommand{\dif}{d}
\newcommand{\rbr}[1]{\left(#1\right)}
\newcommand{\sbr}[1]{\left[#1\right]}
\newcommand{\cbr}[1]{\left\{#1\right\}}
\newcommand{\cbrn}[1]{\{#1\}}
\newcommand{\abr}[1]{\left\langle #1 \right\rangle}
\newcommand{\abrn}[1]{\langle #1 \rangle}
\newcommand{\deriv}[2]{\frac{d #1}{d #2}}
\newcommand{\dderiv}[2]{\frac{d^2 #1}{d {#2}^2}}
\newcommand{\partd}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\nnode}{n_n}
\newcommand{\ndim}{n_d}
\newcommand{\suml}[2]{\sum\limits_{#1}^{#2}}
\newcommand{\Aelid}[2]{A^{#1}_{#2}}
\newcommand{\dv}{\, dv}
\newcommand{\dx}{\, dx}
\newcommand{\ds}{\, ds}
\newcommand{\da}{\, da}
\newcommand{\dV}{\, dV}
\newcommand{\dA}{\, dA}
\newcommand{\eqand}{\quad\text{and}\quad}
\newcommand{\eqor}{\quad\text{or}\quad}
\newcommand{\eqwith}{\quad\text{and}\quad}
\newcommand{\inv}{^{-1}}
\newcommand{\veci}[1]{#1_1,\ldots,#1_n}
\newcommand{\var}{\delta}
\newcommand{\Var}{\Delta}
\newcommand{\eps}{\epsilon}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\Norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\Abs}[1]{\left|#1\right|}
\newcommand{\dabr}[1]{\left\langle\!\left\langle #1 \right\rangle\!\right\rangle}
\newcommand{\dabrn}[1]{\langle\!\langle #1 \rangle\!\rangle}
\newcommand{\idxsep}{\,}
$
This post builds on the formulations I showed in my previous posts by
introducing their nonlinear versions.
In a typical nonlinear problem, the variational setting leads to the weak formulation
Find $u\in V$ such that
\[\begin{equation}
F(u,v) = 0
\label{eq:femnonlinear2}
\end{equation}\]
for all $v\in V$ where the semilinear form
$F$ is nonlinear in terms of $u$ and linear in terms of $v$.
We linearize $F$:
\[\begin{equation}
\Lin [F(u,v)]_{u=\bar{u}} = F(\bar{u}, v)
+ \varn{F(u,v)}{u}{\Var u}\evat_{u=\bar{u}}
\label{eq:femnonlinear4}
\end{equation}\]
Equating \eqref{eq:femnonlinear4} to zero yields a linear system in terms of
$\Var u$
\[\begin{equation}
\boxed{
a(\Var u, v) = b(v)
}
\label{eq:femnonlinear6}
\end{equation}\]
where
\[\begin{equation}
\boxed{
\begin{aligned}
a(\Var u, v) &= \varn{F(u,v)}{u}{\Var u}\evat_{u=\bar{u}} \\
b(v) &= -F(\bar{u}, v)
.
\end{aligned}
}
\label{eq:femnonlinear5}
\end{equation}\]
We can compute the components of the matrices and vectors according to \eqref{eq:femnonlinear6}
\[\begin{equation}
\boxed{
\begin{alignedat}{3}
\Aelid{I\!J}{} &= a(N^J,N^I)
&&= \varn{F(u,N^I)}{u}{N^J}\evat_{u=\bar{u}} \\
b^{I} &= b(N^I)
&&= -F(\bar{u}, N^I).
\end{alignedat}
}
\label{eq:femnonlinear9}
\end{equation}\]
Then the update vector $\Var \Bu = [\Var u^1, \Var u^2, \dots, \Var
u^\nnode]\tra$ is obtained by solving
\[\begin{equation}
\BA \Var \Bu = \Bb
\end{equation}\]
Letting $\Var u$ be the difference between consequent iterates, we obtain the
update equation as
\[\begin{equation}
\boxed{
\Bu \leftarrow \bar{\Bu} + \Var\Bu
}
\end{equation}\]
Example: Nonlinear Poisson’s Equation
Consider the following nonlinear Poisson’s equation
\[\begin{equation}
\begin{alignedat}{4}
- \nabla \dtp (g(u)\nabla u) &= f \quad && \text{in} \quad && \Omega \\
u &= 0 \quad && \text{on} \quad && \del\Omega
\end{alignedat}
\label{eq:femnonlinear8}
\end{equation}\]
The weak formulation reads
Find $u\in V$ such that
\[\begin{equation}
- \int_\Omega \nabla \dtp (g(u)\nabla u) v \dv= \int_\Omega f v \dv
\end{equation}\]
for all $v\in V$ where $V=H^1_0(\Omega)$.
Applying integration by parts and divergence theorem on the left-hand side
\[\begin{equation}
\begin{aligned}
\int_\Omega \nabla \dtp (g(u)\nabla u) v \dv
&= \int_\Omega \nabla \dtp (g(u)\nabla (u) v) \dv
- \int_\Omega g(u)\nabla u\dtp\nabla v \dv \\
&= \underbrace{\int_{\del\Omega} g(u) v (\nabla u\dtp\Bn) \da}_{v = 0
\text{ on } \del\Omega}
- \int_\Omega g(u)\nabla u\dtp\nabla v \dv \\
\end{aligned}
\end{equation}\]
Thus we have the semilinear form
\[\begin{equation}
F(u,v) = \int_{\Omega} g(u) \nabla u \dtp \nabla v \dv - \int_{\Omega} f \,
v \dv = 0
\end{equation}\]
The linearized version of this problem is then with \eqref{eq:femnonlinear5}
\[\begin{equation}
\begin{aligned}
a(\Var u,v) &= \int_{\Omega}
\rbr{\deriv{g}{u}\evat_{\bar{u}} \Var u\, \nabla \bar{u}
+ g(\bar{u})\nabla(\Var u)} \dtp \nabla v \dv \\
b(v) &= \int_{\Omega} [f \, v - g(\bar{u}) \nabla \bar{u} \dtp \nabla v] \dv\\
\end{aligned}
\end{equation}\]
and the matrix and vector components are with \eqref{eq:femnonlinear9}
\[\begin{equation}
\begin{aligned}
\Aelid{I\!J}{} &= \int_{\Omega}
\rbr{\deriv{g}{u}\evat_{\bar{u}} N^J \, \nabla \bar{u}
+ g(\bar{u})\BB^J} \dtp \BB^I \dv \\
b^{I} &= \int_{\Omega} [f \, N^I - g(\bar{u}) \nabla \bar{u} \dtp \BB^I ] \dv\\
\end{aligned}
\end{equation}\]
where the previous solution and its gradient are computed as
\[\begin{equation}
\bar{u} = \suml{I=1}{\nnode} \bar{u}^I N^I
\eqand
\nabla \bar{u} = \suml{I=1}{\nnode} \bar{u}^I \BB^I
.
\end{equation}\]
Nonlinear Time-Dependent Problems
In the case of a nonlinear time-dependent problem, we have the following weak
form:
Find $u \in V$ such that
\[\begin{equation}
m(\dot{u}, v; t) + F(u,v; t) = 0
\label{eq:nonlineartimedependentweak1}
\end{equation}\]
for all $v \in V$ and $t \in [0,\infty)$
where $F$ is a semilinear form.
Discretization yields the following nonlinear system of equations
\[\begin{equation}
\BM(t)\Bu + \Bf(u; t) = \Bzero
\end{equation}\]
where
\[\begin{equation}
\begin{aligned}
M^{I\!J}(t) &= m(N^J, N^I; t) \\
f^{I}(u;t) &= F(u, N^I; t).
\end{aligned}
\end{equation}\]
Explicit Euler Scheme
We discretize in time with the finite difference
$\dot{u} \approx [u_{n+1}-u_n]/{\Delta t}$ and linearity allows us to write
\begin{equation}
\boxed{
m(\dot{u}, v; t)
\approx \frac{1}{\Delta t} [m(u_{n+1}, v; t_{n+1}) - m(u_n, v; t_n)]
}
\label{eq:discretetimedependent1}
\end{equation}
We discretize the variational forms in time according to
\eqref{eq:discretetimedependent1}, and evaluate the remaining terms at $t_n$:
\[\begin{equation}
\frac{1}{\Delta t} [m(u_{n+1},v;t_{n+1}) - m(u_{n},v;t_{n})] + F(u_n, v; t_n) = 0
\end{equation}\]
The corresponding system of equations is
\[\begin{equation}
\frac{1}{\Delta t} [\BM_{n+1}\Bu_{n+1} - \BM_n\Bu_n]
+ \Bf_n = \Bzero
\end{equation}\]
where $\Bf_n = \Bf(u_n, t_n)$. This yields the following update equation
\[\begin{equation}
\boxed{
\Bu_{n+1} = \BM_{n+1}\inv [\BM_n\Bu_n - \Delta t \Bf_n]
}
\end{equation}\]
For a time-independent $m$, this becomes
\[\begin{equation}
\Bu_{n+1} = \Bu_n - \Delta t \BM\inv\Bf_n
\end{equation}\]
Implicit Euler Scheme
For the implicit scheme, we evaluate the remaining terms at $t_{n+1}$ and let
the result be equal to
\[\begin{equation}
G(u_{n+1}, v)
:= \frac{1}{\Delta t} [m(u_{n+1},v;t_{n+1}) - m(u_{n},v;t_{n})] + F(u_{n+1}, v; t_{n+1}) = 0
\end{equation}\]
We will hereon replace $u_{n+1}$ with $u$ for brevity.
The update of this nonlinear system requires the linearization of
$G(u, v)$:
\[\begin{equation}
\Lin[G(u,v)]_{u=\bar{u}}
= G(\bar{u}, v) + \varn{G}{u}{\Var u}\evat_{u=\bar{u}} = 0
\end{equation}\]
We thus have the following linear setting for the Newton update $\Var u$:
\[\begin{equation}
a(\Var u, v) = b(v)
\end{equation}\]
where
\[\begin{equation}
\begin{aligned}
a(\Var u, v)
&:= \varn{G}{u}{\Var u} \evat_{u=\bar{u}}
= \frac{1}{\Delta t} m(\Var u, v; t_{n+1})
+ \varn{F(u, v; t_{n+1})}{u}{\Var u} \evat_{u=\bar{u}} \\
b(v) &:= -G(\bar{u}, v)
= - F(\bar{u}, v; t_{n+1})
-\frac{1}{\Delta t} [m(\bar{u},v;t_{n+1}) - m(u_{n},v;t_{n})]
\end{aligned}
\end{equation}\]
Discretization yields
\[\begin{equation}
\rbr{\frac{1}{\Delta t} \BM_{n+1} + \tilde{\BA}}\Var \Bu
= \Bb
\end{equation}\]
where
\[\begin{equation}
\tilde{A}^{I\!J} := \varn{F(u, N^I;t_{n+1})}{u}{N^J} \evat_{u=\bar{u}}
\eqand
b^I := b(N^I)
\end{equation}\]
The Newton update is rendered
\[\begin{equation}
\boxed{
\Bu \leftarrow \bar{\Bu} + \Var\Bu
\eqwith
\Var \Bu
= [\frac{1}{\Delta t} \BM_{n+1} + \tilde{\BA}]\inv\Bb
}
\end{equation}\]
which is repeated until the solution for the next timestep $\Bu$ converges
to a satisfactory value.
Nonlinear Coupled Problems
For a nonlinear coupled problem, the weak formulation is as follows
Find $u\in V_1$, $y\in V_2$ such that
\[\begin{equation}
\begin{aligned}
F(u, y, v) &= 0 \\
G(u, y, w) &= 0 \\
\end{aligned}
\label{eq:nonlinearcoupled1}
\end{equation}\]
for all $v\in V_1$, $w \in V_2$ where
$F(\cdot,\cdot, \cdot)$, $G(\cdot, \cdot, \cdot)$ are nonlinear in terms of
$u$ and $y$ and linear in terms of $v$ and $w$.
We linearize the semilinear forms about the nonlinear terms:
\[\begin{equation}
\begin{alignedat}{4}
\Lin[F(u, y, v)]_{\bar{u},\bar{y}}
&= F(\bar{u},\bar{y},v)
&&+ \varn{F(u, y, v)}{u}{\Var u} \evat_{\bar{u},\bar{y}}
&&+ \varn{F(u, y, v)}{y}{\Var y} \evat_{\bar{u},\bar{y}} \\
\Lin[G(u, y, w)]_{\bar{u},\bar{y}}
&= G(\bar{u},\bar{y},w)
&&+ \varn{G(u, y, w)}{u}{\Var u} \evat_{\bar{u},\bar{y}}
&&+ \varn{G(u, y, w)}{y}{\Var y} \evat_{\bar{u},\bar{y}}
\end{alignedat}
\label{eq:nonlinearcoupled2}
\end{equation}\]
where the evaluations take place at $u=\bar{u}$ and $y=\bar{y}$.
Equating the linearized residuals to zero, we obtain a linear system of the form
\[\begin{equation}
\begin{alignedat}{3}
a(u, v) &+ b(y, v) &&= c(v) \\
d(u, w) &+ e(y, w) &&= f(w) \\
\end{alignedat}
\label{eq:coupledweakform1}
\end{equation}\]
with the bilinear forms $a$, $b$, $d$, $e$ and the linear forms $c$, $f$ which
are defined as
\[\begin{equation}
\begin{gathered}
\begin{alignedat}{4}
a(\Var u, v) &:= \varn{F(u, y, v)}{u}{\Var u} \evat_{\bar{u},\bar{y}}
\quad &
b(\Var y, v) &:= \varn{F(u, y, v)}{y}{\Var y} \evat_{\bar{u},\bar{y}}
\\
d(\Var u, w) &:= \varn{G(u, y, w)}{u}{\Var u} \evat_{\bar{u},\bar{y}}
\quad &
e(\Var y, w) &:= \varn{G(u, y, w)}{y}{\Var y} \evat_{\bar{u},\bar{y}}
\end{alignedat}
\\
\text{and}
\\
\begin{aligned}
c(v) &:= -F(\bar{u},\bar{y},v) \\
f(w) &:= -G(\bar{u}, \bar{y}, w)
\end{aligned}
\end{gathered}
\end{equation}\]
Discretizing as done in the previous section, we obtain the following linear system of
equations
\[\begin{equation}
\begin{bmatrix}
\BA & \BB \\
\BD & \BE
\end{bmatrix}
\begin{bmatrix}
\Var \Bu \\ \Var \By
\end{bmatrix}
=
\begin{bmatrix}
\Bc \\ \Bf
\end{bmatrix}
\end{equation}\]
whose solution yields the update values $\Var \Bu$ and $\Var \By$. Thus the Newton
update equations are
\[\begin{equation}
\begin{alignedat}{3}
\Bu &\leftarrow \bar{\Bu} &&+ \Var\Bu \\
\By &\leftarrow \bar{\By} &&+ \Var\By
.
\end{alignedat}
\end{equation}\]
Example: Cahn-Hilliard Equation
The Cahn-Hilliard equation describes the process of phase separation, by which
the two components of a binary fluid spontaneously separate and form domains
pure in each component. The problem is nonlinear, coupled and time-dependent.
The IBVP reads
\[\begin{equation}
\begin{alignedat}{4}
\partd{c}{t} &= \nabla\dtp(\BM\nabla \mu)
\qquad&& \text{in} \qquad&& \Omega\times I \\
\nabla c\dtp\Bn &= 0 && \text{on} && \del\Omega\times I\\
\nabla \mu\dtp\Bn &= 0 && \text{on} && \del\Omega\times I\\
c &= c_0 && \text{in} && \Omega, t = 0 \\
\mu &= 0 && \text{in} && \Omega, t = 0 \\
\end{alignedat}
\label{eq:cahnhilliard1}
\end{equation}\]
where
\[\begin{equation}
\mu = \deriv{f}{c} - \nabla\dtp(\BLambda\nabla c)
\label{eq:cahnhilliard2}
\end{equation}\]
and $t\in I = [0,\infty)$. Here,
- $c$ is the scalar variable for concentration,
- $\mu$ is the scalar variable for the chemical potential,
- $f: c \mapsto f(c)$ is the function representing chemical free energy,
- $\BM$ is a second-order tensor describing the mobility of the chemical,
- $\BLambda$ is a second-order tensor describing both the interface
thickness and direction of phase transition.
The fourth-order PDE governing the problem can be formulated as a coupled
system of two second-order PDEs with the variables $c$ and $\mu$, as
demonstrated in \eqref{eq:cahnhilliard1}
and \eqref{eq:cahnhilliard2}.
The weak formulation then reads
Find $c \in V_1$, $\mu\in V_2$ such that
\[\begin{equation}
\begin{aligned}
\int_\Omega \partd{c}{t} v \dx
- \int_\Omega \nabla\dtp(\BM\nabla \mu) v \dx &=0 \\
\int_\Omega \sbr{\mu - \deriv{f}{c}} w \dx
+ \int_\Omega \nabla\dtp(\BLambda\nabla c) w\dx &= 0
\end{aligned}
\end{equation}\]
for all $v \in V_1$, $w \in V_2$ and $t \in I$.
We discretize in time implicitly with $\del c/\del t \approx
(c_{n+1}-c_n)/\Var t$. We also denote the values for the next timestep
$c_{n+1}$ and $\mu_{n+1}$ as $c$ and $\mu$ for brevity.
Using integration-by-parts, the divergence theorem, and the given boundary
conditions, we arrive at the following nonlinear forms
\[\begin{equation}
\begin{alignedat}{3}
F(c,\mu,v) &= \int_\Omega \frac{1}{\Var t} (c-c_n) v \dx
+ \int_\Omega (\BM\nabla \mu)\dtp \nabla v \dx &&= 0 \\
G(c,\mu,w) &= \int_\Omega \sbr{\mu - \deriv{f}{c}} w \dx
- \int_\Omega (\BLambda\nabla c)\dtp \nabla w\dx &&= 0
\end{alignedat}
\end{equation}\]
which is a nonlinear coupled system of the form \eqref{eq:nonlinearcoupled1}.
We linearize the forms according to \eqref{eq:nonlinearcoupled2} and obtain
the following variations
\[\begin{align*}
\varn{F}{c}{\Var c}
&= \int_\Omega \frac{1}{\Var t} \Var c\, v \dx \\
\varn{F}{\mu}{\Var \mu}
&= \int_\Omega (\BM\nabla (\Var\mu))\dtp \nabla v \dx \\
\varn{G}{c}{\Var c}
&= - \int_\Omega \dderiv{f}{c}\Var c \, w \dx
- \int_\Omega (\BLambda\nabla (\Var c))\dtp \nabla w\dx \\
\varn{G}{\mu}{\Var \mu}
&= \int_\Omega \Var\mu \, w \dx
\end{align*}\]
We substitute basis functions and obtain our system matrix
and vectors
\[\begin{align*}
P^{I\!J}
&= \int_\Omega \frac{1}{\Var t} N^JN^I \dx \\
Q^{IL}
&= \int_\Omega (\BM\BB^L)\dtp\BB^I \dx \\
r^{I}
&= \int_\Omega \frac{1}{\Var t}(\bar{c}-c_n)N^I \dx
+ \int_\Omega (\BM\nabla\bar{\mu})\dtp\BB^I\dx \\
S^{K\!J}
&= - \int_\Omega \dderiv{f}{c}\evat_{c=\bar{c}} N^J N^K \dx
- \int_\Omega (\BLambda \BB^J)\dtp \BB^K\dx \\
T^{K\!L}
&= \int_\Omega N^L N^K \dx \\
u^{K}
&= \int_\Omega \sbr{\bar{\mu} - \deriv{f}{c}\evat_{c=\bar{c}}} N^K \dx
- \int_\Omega (\BLambda\nabla \bar{c})\dtp \BB^K\dx
\end{align*}\]
which constitute the system
\[\begin{equation}
\begin{bmatrix}
\BP & \BQ \\
\BS & \BT
\end{bmatrix}
\begin{bmatrix}
\Var \Bc \\ \Var \Bmu
\end{bmatrix}
=
\begin{bmatrix}
\Br \\ \Bu
\end{bmatrix}
\end{equation}\]
Solution yields the update values $\Var \Bc$ and $\Var \Bmu$. The Newton
update equations are then
\[\begin{equation}
\begin{alignedat}{3}
\Bc &\leftarrow \bar{\Bc} &&+ \Var\Bc \\
\Bmu &\leftarrow \bar{\Bmu} &&+ \Var\Bmu
.
\end{alignedat}
\end{equation}\]
The system is solved for $c_{n+1}$ and $\mu_{n+1}$ at each $t=t_n$ to obtain
the evolutions of the concentration and chemical potential.