$
\newcommand{\Ua}{\mathrm{a}}
\newcommand{\Ub}{\mathrm{b}}
\newcommand{\Uc}{\mathrm{c}}
\newcommand{\Ud}{\mathrm{d}}
\newcommand{\Ue}{\mathrm{e}}
\newcommand{\Uf}{\mathrm{f}}
\newcommand{\Ug}{\mathrm{g}}
\newcommand{\Uh}{\mathrm{h}}
\newcommand{\Ui}{\mathrm{i}}
\newcommand{\Uj}{\mathrm{j}}
\newcommand{\Uk}{\mathrm{k}}
\newcommand{\Ul}{\mathrm{l}}
\newcommand{\Um}{\mathrm{m}}
\newcommand{\Un}{\mathrm{n}}
\newcommand{\Uo}{\mathrm{o}}
\newcommand{\Up}{\mathrm{p}}
\newcommand{\Uq}{\mathrm{q}}
\newcommand{\Ur}{\mathrm{r}}
\newcommand{\Us}{\mathrm{s}}
\newcommand{\Ut}{\mathrm{t}}
\newcommand{\Uu}{\mathrm{u}}
\newcommand{\Uv}{\mathrm{v}}
\newcommand{\Uw}{\mathrm{w}}
\newcommand{\Ux}{\mathrm{x}}
\newcommand{\Uy}{\mathrm{y}}
\newcommand{\Uz}{\mathrm{z}}
\newcommand{\UA}{\mathrm{A}}
\newcommand{\UB}{\mathrm{B}}
\newcommand{\UC}{\mathrm{C}}
\newcommand{\UD}{\mathrm{D}}
\newcommand{\UE}{\mathrm{E}}
\newcommand{\UF}{\mathrm{F}}
\newcommand{\UG}{\mathrm{G}}
\newcommand{\UH}{\mathrm{H}}
\newcommand{\UI}{\mathrm{I}}
\newcommand{\UJ}{\mathrm{J}}
\newcommand{\UK}{\mathrm{K}}
\newcommand{\UL}{\mathrm{L}}
\newcommand{\UM}{\mathrm{M}}
\newcommand{\UN}{\mathrm{N}}
\newcommand{\UO}{\mathrm{O}}
\newcommand{\UP}{\mathrm{P}}
\newcommand{\UQ}{\mathrm{Q}}
\newcommand{\UR}{\mathrm{R}}
\newcommand{\US}{\mathrm{S}}
\newcommand{\UT}{\mathrm{T}}
\newcommand{\UU}{\mathrm{U}}
\newcommand{\UV}{\mathrm{V}}
\newcommand{\UW}{\mathrm{W}}
\newcommand{\UX}{\mathrm{X}}
\newcommand{\UY}{\mathrm{Y}}
\newcommand{\UZ}{\mathrm{Z}}
%
\newcommand{\Uzero }{\mathrm{0}}
\newcommand{\Uone }{\mathrm{1}}
\newcommand{\Utwo }{\mathrm{2}}
\newcommand{\Uthree}{\mathrm{3}}
\newcommand{\Ufour }{\mathrm{4}}
\newcommand{\Ufive }{\mathrm{5}}
\newcommand{\Usix }{\mathrm{6}}
\newcommand{\Useven}{\mathrm{7}}
\newcommand{\Ueight}{\mathrm{8}}
\newcommand{\Unine }{\mathrm{9}}
%
\newcommand{\Ja}{\mathit{a}}
\newcommand{\Jb}{\mathit{b}}
\newcommand{\Jc}{\mathit{c}}
\newcommand{\Jd}{\mathit{d}}
\newcommand{\Je}{\mathit{e}}
\newcommand{\Jf}{\mathit{f}}
\newcommand{\Jg}{\mathit{g}}
\newcommand{\Jh}{\mathit{h}}
\newcommand{\Ji}{\mathit{i}}
\newcommand{\Jj}{\mathit{j}}
\newcommand{\Jk}{\mathit{k}}
\newcommand{\Jl}{\mathit{l}}
\newcommand{\Jm}{\mathit{m}}
\newcommand{\Jn}{\mathit{n}}
\newcommand{\Jo}{\mathit{o}}
\newcommand{\Jp}{\mathit{p}}
\newcommand{\Jq}{\mathit{q}}
\newcommand{\Jr}{\mathit{r}}
\newcommand{\Js}{\mathit{s}}
\newcommand{\Jt}{\mathit{t}}
\newcommand{\Ju}{\mathit{u}}
\newcommand{\Jv}{\mathit{v}}
\newcommand{\Jw}{\mathit{w}}
\newcommand{\Jx}{\mathit{x}}
\newcommand{\Jy}{\mathit{y}}
\newcommand{\Jz}{\mathit{z}}
\newcommand{\JA}{\mathit{A}}
\newcommand{\JB}{\mathit{B}}
\newcommand{\JC}{\mathit{C}}
\newcommand{\JD}{\mathit{D}}
\newcommand{\JE}{\mathit{E}}
\newcommand{\JF}{\mathit{F}}
\newcommand{\JG}{\mathit{G}}
\newcommand{\JH}{\mathit{H}}
\newcommand{\JI}{\mathit{I}}
\newcommand{\JJ}{\mathit{J}}
\newcommand{\JK}{\mathit{K}}
\newcommand{\JL}{\mathit{L}}
\newcommand{\JM}{\mathit{M}}
\newcommand{\JN}{\mathit{N}}
\newcommand{\JO}{\mathit{O}}
\newcommand{\JP}{\mathit{P}}
\newcommand{\JQ}{\mathit{Q}}
\newcommand{\JR}{\mathit{R}}
\newcommand{\JS}{\mathit{S}}
\newcommand{\JT}{\mathit{T}}
\newcommand{\JU}{\mathit{U}}
\newcommand{\JV}{\mathit{V}}
\newcommand{\JW}{\mathit{W}}
\newcommand{\JX}{\mathit{X}}
\newcommand{\JY}{\mathit{Y}}
\newcommand{\JZ}{\mathit{Z}}
%
\newcommand{\Jzero }{\mathit{0}}
\newcommand{\Jone }{\mathit{1}}
\newcommand{\Jtwo }{\mathit{2}}
\newcommand{\Jthree}{\mathit{3}}
\newcommand{\Jfour }{\mathit{4}}
\newcommand{\Jfive }{\mathit{5}}
\newcommand{\Jsix }{\mathit{6}}
\newcommand{\Jseven}{\mathit{7}}
\newcommand{\Jeight}{\mathit{8}}
\newcommand{\Jnine }{\mathit{9}}
%
\newcommand{\BA}{\boldsymbol{A}}
\newcommand{\BB}{\boldsymbol{B}}
\newcommand{\BC}{\boldsymbol{C}}
\newcommand{\BD}{\boldsymbol{D}}
\newcommand{\BE}{\boldsymbol{E}}
\newcommand{\BF}{\boldsymbol{F}}
\newcommand{\BG}{\boldsymbol{G}}
\newcommand{\BH}{\boldsymbol{H}}
\newcommand{\BI}{\boldsymbol{I}}
\newcommand{\BJ}{\boldsymbol{J}}
\newcommand{\BK}{\boldsymbol{K}}
\newcommand{\BL}{\boldsymbol{L}}
\newcommand{\BM}{\boldsymbol{M}}
\newcommand{\BN}{\boldsymbol{N}}
\newcommand{\BO}{\boldsymbol{O}}
\newcommand{\BP}{\boldsymbol{P}}
\newcommand{\BQ}{\boldsymbol{Q}}
\newcommand{\BR}{\boldsymbol{R}}
\newcommand{\BS}{\boldsymbol{S}}
\newcommand{\BT}{\boldsymbol{T}}
\newcommand{\BU}{\boldsymbol{U}}
\newcommand{\BV}{\boldsymbol{V}}
\newcommand{\BW}{\boldsymbol{W}}
\newcommand{\BX}{\boldsymbol{X}}
\newcommand{\BY}{\boldsymbol{Y}}
\newcommand{\BZ}{\boldsymbol{Z}}
\newcommand{\Ba}{\boldsymbol{a}}
\newcommand{\Bb}{\boldsymbol{b}}
\newcommand{\Bc}{\boldsymbol{c}}
\newcommand{\Bd}{\boldsymbol{d}}
\newcommand{\Be}{\boldsymbol{e}}
\newcommand{\Bf}{\boldsymbol{f}}
\newcommand{\Bg}{\boldsymbol{g}}
\newcommand{\Bh}{\boldsymbol{h}}
\newcommand{\Bi}{\boldsymbol{i}}
\newcommand{\Bj}{\boldsymbol{j}}
\newcommand{\Bk}{\boldsymbol{k}}
\newcommand{\Bl}{\boldsymbol{l}}
\newcommand{\Bm}{\boldsymbol{m}}
\newcommand{\Bn}{\boldsymbol{n}}
\newcommand{\Bo}{\boldsymbol{o}}
\newcommand{\Bp}{\boldsymbol{p}}
\newcommand{\Bq}{\boldsymbol{q}}
\newcommand{\Br}{\boldsymbol{r}}
\newcommand{\Bs}{\boldsymbol{s}}
\newcommand{\Bt}{\boldsymbol{t}}
\newcommand{\Bu}{\boldsymbol{u}}
\newcommand{\Bv}{\boldsymbol{v}}
\newcommand{\Bw}{\boldsymbol{w}}
\newcommand{\Bx}{\boldsymbol{x}}
\newcommand{\By}{\boldsymbol{y}}
\newcommand{\Bz}{\boldsymbol{z}}
%
\newcommand{\Bzero }{\boldsymbol{0}}
\newcommand{\Bone }{\boldsymbol{1}}
\newcommand{\Btwo }{\boldsymbol{2}}
\newcommand{\Bthree}{\boldsymbol{3}}
\newcommand{\Bfour }{\boldsymbol{4}}
\newcommand{\Bfive }{\boldsymbol{5}}
\newcommand{\Bsix }{\boldsymbol{6}}
\newcommand{\Bseven}{\boldsymbol{7}}
\newcommand{\Beight}{\boldsymbol{8}}
\newcommand{\Bnine }{\boldsymbol{9}}
%
\newcommand{\Balpha }{\boldsymbol{\alpha} }
\newcommand{\Bbeta }{\boldsymbol{\beta} }
\newcommand{\Bgamma }{\boldsymbol{\gamma} }
\newcommand{\Bdelta }{\boldsymbol{\delta} }
\newcommand{\Bepsilon}{\boldsymbol{\epsilon} }
\newcommand{\Bvareps }{\boldsymbol{\varepsilon} }
\newcommand{\Bvarepsilon}{\boldsymbol{\varepsilon}}
\newcommand{\Bzeta }{\boldsymbol{\zeta} }
\newcommand{\Beta }{\boldsymbol{\eta} }
\newcommand{\Btheta }{\boldsymbol{\theta} }
\newcommand{\Bvarthe }{\boldsymbol{\vartheta} }
\newcommand{\Biota }{\boldsymbol{\iota} }
\newcommand{\Bkappa }{\boldsymbol{\kappa} }
\newcommand{\Blambda }{\boldsymbol{\lambda} }
\newcommand{\Bmu }{\boldsymbol{\mu} }
\newcommand{\Bnu }{\boldsymbol{\nu} }
\newcommand{\Bxi }{\boldsymbol{\xi} }
\newcommand{\Bpi }{\boldsymbol{\pi} }
\newcommand{\Brho }{\boldsymbol{\rho} }
\newcommand{\Bvrho }{\boldsymbol{\varrho} }
\newcommand{\Bsigma }{\boldsymbol{\sigma} }
\newcommand{\Bvsigma }{\boldsymbol{\varsigma} }
\newcommand{\Btau }{\boldsymbol{\tau} }
\newcommand{\Bupsilon}{\boldsymbol{\upsilon} }
\newcommand{\Bphi }{\boldsymbol{\phi} }
\newcommand{\Bvarphi }{\boldsymbol{\varphi} }
\newcommand{\Bchi }{\boldsymbol{\chi} }
\newcommand{\Bpsi }{\boldsymbol{\psi} }
\newcommand{\Bomega }{\boldsymbol{\omega} }
\newcommand{\BGamma }{\boldsymbol{\Gamma} }
\newcommand{\BDelta }{\boldsymbol{\Delta} }
\newcommand{\BTheta }{\boldsymbol{\Theta} }
\newcommand{\BLambda }{\boldsymbol{\Lambda} }
\newcommand{\BXi }{\boldsymbol{\Xi} }
\newcommand{\BPi }{\boldsymbol{\Pi} }
\newcommand{\BSigma }{\boldsymbol{\Sigma} }
\newcommand{\BUpsilon}{\boldsymbol{\Upsilon} }
\newcommand{\BPhi }{\boldsymbol{\Phi} }
\newcommand{\BPsi }{\boldsymbol{\Psi} }
\newcommand{\BOmega }{\boldsymbol{\Omega} }
%
\newcommand{\IA}{\mathbb{A}}
\newcommand{\IB}{\mathbb{B}}
\newcommand{\IC}{\mathbb{C}}
\newcommand{\ID}{\mathbb{D}}
\newcommand{\IE}{\mathbb{E}}
\newcommand{\IF}{\mathbb{F}}
\newcommand{\IG}{\mathbb{G}}
\newcommand{\IH}{\mathbb{H}}
\newcommand{\II}{\mathbb{I}}
\renewcommand{\IJ}{\mathbb{J}}
\newcommand{\IK}{\mathbb{K}}
\newcommand{\IL}{\mathbb{L}}
\newcommand{\IM}{\mathbb{M}}
\newcommand{\IN}{\mathbb{N}}
\newcommand{\IO}{\mathbb{O}}
\newcommand{\IP}{\mathbb{P}}
\newcommand{\IQ}{\mathbb{Q}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IS}{\mathbb{S}}
\newcommand{\IT}{\mathbb{T}}
\newcommand{\IU}{\mathbb{U}}
\newcommand{\IV}{\mathbb{V}}
\newcommand{\IW}{\mathbb{W}}
\newcommand{\IX}{\mathbb{X}}
\newcommand{\IY}{\mathbb{Y}}
\newcommand{\IZ}{\mathbb{Z}}
%
\newcommand{\FA}{\mathsf{A}}
\newcommand{\FB}{\mathsf{B}}
\newcommand{\FC}{\mathsf{C}}
\newcommand{\FD}{\mathsf{D}}
\newcommand{\FE}{\mathsf{E}}
\newcommand{\FF}{\mathsf{F}}
\newcommand{\FG}{\mathsf{G}}
\newcommand{\FH}{\mathsf{H}}
\newcommand{\FI}{\mathsf{I}}
\newcommand{\FJ}{\mathsf{J}}
\newcommand{\FK}{\mathsf{K}}
\newcommand{\FL}{\mathsf{L}}
\newcommand{\FM}{\mathsf{M}}
\newcommand{\FN}{\mathsf{N}}
\newcommand{\FO}{\mathsf{O}}
\newcommand{\FP}{\mathsf{P}}
\newcommand{\FQ}{\mathsf{Q}}
\newcommand{\FR}{\mathsf{R}}
\newcommand{\FS}{\mathsf{S}}
\newcommand{\FT}{\mathsf{T}}
\newcommand{\FU}{\mathsf{U}}
\newcommand{\FV}{\mathsf{V}}
\newcommand{\FW}{\mathsf{W}}
\newcommand{\FX}{\mathsf{X}}
\newcommand{\FY}{\mathsf{Y}}
\newcommand{\FZ}{\mathsf{Z}}
\newcommand{\Fa}{\mathsf{a}}
\newcommand{\Fb}{\mathsf{b}}
\newcommand{\Fc}{\mathsf{c}}
\newcommand{\Fd}{\mathsf{d}}
\newcommand{\Fe}{\mathsf{e}}
\newcommand{\Ff}{\mathsf{f}}
\newcommand{\Fg}{\mathsf{g}}
\newcommand{\Fh}{\mathsf{h}}
\newcommand{\Fi}{\mathsf{i}}
\newcommand{\Fj}{\mathsf{j}}
\newcommand{\Fk}{\mathsf{k}}
\newcommand{\Fl}{\mathsf{l}}
\newcommand{\Fm}{\mathsf{m}}
\newcommand{\Fn}{\mathsf{n}}
\newcommand{\Fo}{\mathsf{o}}
\newcommand{\Fp}{\mathsf{p}}
\newcommand{\Fq}{\mathsf{q}}
\newcommand{\Fr}{\mathsf{r}}
\newcommand{\Fs}{\mathsf{s}}
\newcommand{\Ft}{\mathsf{t}}
\newcommand{\Fu}{\mathsf{u}}
\newcommand{\Fv}{\mathsf{v}}
\newcommand{\Fw}{\mathsf{w}}
\newcommand{\Fx}{\mathsf{x}}
\newcommand{\Fy}{\mathsf{y}}
\newcommand{\Fz}{\mathsf{z}}
%
\newcommand{\Fzero }{\mathsf{0}}
\newcommand{\Fone }{\mathsf{1}}
\newcommand{\Ftwo }{\mathsf{2}}
\newcommand{\Fthree}{\mathsf{3}}
\newcommand{\Ffour }{\mathsf{4}}
\newcommand{\Ffive }{\mathsf{5}}
\newcommand{\Fsix }{\mathsf{6}}
\newcommand{\Fseven}{\mathsf{7}}
\newcommand{\Feight}{\mathsf{8}}
\newcommand{\Fnine }{\mathsf{9}}
%
\newcommand{\CA}{\mathcal{A}}
\newcommand{\CB}{\mathcal{B}}
\newcommand{\CC}{\mathcal{C}}
\newcommand{\CD}{\mathcal{D}}
\newcommand{\CE}{\mathcal{E}}
\newcommand{\CF}{\mathcal{F}}
\newcommand{\CG}{\mathcal{G}}
\newcommand{\CH}{\mathcal{H}}
\newcommand{\CI}{\mathcal{I}}
\newcommand{\CJ}{\mathcal{J}}
\newcommand{\CK}{\mathcal{K}}
\newcommand{\CL}{\mathcal{L}}
\newcommand{\CM}{\mathcal{M}}
\newcommand{\CN}{\mathcal{N}}
\newcommand{\CO}{\mathcal{O}}
\newcommand{\CP}{\mathcal{P}}
\newcommand{\CQ}{\mathcal{Q}}
\newcommand{\CR}{\mathcal{R}}
\newcommand{\CS}{\mathcal{S}}
\newcommand{\CT}{\mathcal{T}}
\newcommand{\CU}{\mathcal{U}}
\newcommand{\CV}{\mathcal{V}}
\newcommand{\CW}{\mathcal{W}}
\newcommand{\CX}{\mathcal{X}}
\newcommand{\CY}{\mathcal{Y}}
\newcommand{\CZ}{\mathcal{Z}}
%
\newcommand{\KA}{\mathfrak{A}}
\newcommand{\KB}{\mathfrak{B}}
\newcommand{\KC}{\mathfrak{C}}
\newcommand{\KD}{\mathfrak{D}}
\newcommand{\KE}{\mathfrak{E}}
\newcommand{\KF}{\mathfrak{F}}
\newcommand{\KG}{\mathfrak{G}}
\newcommand{\KH}{\mathfrak{H}}
\newcommand{\KI}{\mathfrak{I}}
\newcommand{\KJ}{\mathfrak{J}}
\newcommand{\KK}{\mathfrak{K}}
\newcommand{\KL}{\mathfrak{L}}
\newcommand{\KM}{\mathfrak{M}}
\newcommand{\KN}{\mathfrak{N}}
\newcommand{\KO}{\mathfrak{O}}
\newcommand{\KP}{\mathfrak{P}}
\newcommand{\KQ}{\mathfrak{Q}}
\newcommand{\KR}{\mathfrak{R}}
\newcommand{\KS}{\mathfrak{S}}
\newcommand{\KT}{\mathfrak{T}}
\newcommand{\KU}{\mathfrak{U}}
\newcommand{\KV}{\mathfrak{V}}
\newcommand{\KW}{\mathfrak{W}}
\newcommand{\KX}{\mathfrak{X}}
\newcommand{\KY}{\mathfrak{Y}}
\newcommand{\KZ}{\mathfrak{Z}}
\newcommand{\Ka}{\mathfrak{a}}
\newcommand{\Kb}{\mathfrak{b}}
\newcommand{\Kc}{\mathfrak{c}}
\newcommand{\Kd}{\mathfrak{d}}
\newcommand{\Ke}{\mathfrak{e}}
\newcommand{\Kf}{\mathfrak{f}}
\newcommand{\Kg}{\mathfrak{g}}
\newcommand{\Kh}{\mathfrak{h}}
\newcommand{\Ki}{\mathfrak{i}}
\newcommand{\Kj}{\mathfrak{j}}
\newcommand{\Kk}{\mathfrak{k}}
\newcommand{\Kl}{\mathfrak{l}}
\newcommand{\Km}{\mathfrak{m}}
\newcommand{\Kn}{\mathfrak{n}}
\newcommand{\Ko}{\mathfrak{o}}
\newcommand{\Kp}{\mathfrak{p}}
\newcommand{\Kq}{\mathfrak{q}}
\newcommand{\Kr}{\mathfrak{r}}
\newcommand{\Ks}{\mathfrak{s}}
\newcommand{\Kt}{\mathfrak{t}}
\newcommand{\Ku}{\mathfrak{u}}
\newcommand{\Kv}{\mathfrak{v}}
\newcommand{\Kw}{\mathfrak{w}}
\newcommand{\Kx}{\mathfrak{x}}
\newcommand{\Ky}{\mathfrak{y}}
\newcommand{\Kz}{\mathfrak{z}}
%
\newcommand{\Kzero }{\mathfrak{0}}
\newcommand{\Kone }{\mathfrak{1}}
\newcommand{\Ktwo }{\mathfrak{2}}
\newcommand{\Kthree}{\mathfrak{3}}
\newcommand{\Kfour }{\mathfrak{4}}
\newcommand{\Kfive }{\mathfrak{5}}
\newcommand{\Ksix }{\mathfrak{6}}
\newcommand{\Kseven}{\mathfrak{7}}
\newcommand{\Keight}{\mathfrak{8}}
\newcommand{\Knine }{\mathfrak{9}}
%
$
$
\newcommand{\Lin}{\mathop{\rm Lin}\nolimits}
\newcommand{\modop}{\mathop{\rm mod}\nolimits}
\renewcommand{\div}{\mathop{\rm div}\nolimits}
\newcommand{\Var}{\Delta}
\newcommand{\evat}{\bigg|}
\newcommand\varn[3]{D_{#2}#1\cdot #3}
\newcommand{\dtp}{\cdot}
\newcommand{\dyd}{\otimes}
\newcommand{\tra}{^T}
\newcommand{\del}{\partial}
\newcommand{\dif}{d}
\newcommand{\rbr}[1]{\left(#1\right)}
\newcommand{\sbr}[1]{\left[#1\right]}
\newcommand{\cbr}[1]{\left\{#1\right\}}
\newcommand{\cbrn}[1]{\{#1\}}
\newcommand{\abr}[1]{\left\langle #1 \right\rangle}
\newcommand{\abrn}[1]{\langle #1 \rangle}
\newcommand{\deriv}[2]{\frac{d #1}{d #2}}
\newcommand{\dderiv}[2]{\frac{d^2 #1}{d {#2}^2}}
\newcommand{\partd}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\nnode}{n_n}
\newcommand{\ndim}{n_d}
\newcommand{\suml}[2]{\sum\limits_{#1}^{#2}}
\newcommand{\Aelid}[2]{A^{#1}_{#2}}
\newcommand{\dv}{\, dv}
\newcommand{\dx}{\, dx}
\newcommand{\ds}{\, ds}
\newcommand{\da}{\, da}
\newcommand{\dV}{\, dV}
\newcommand{\dA}{\, dA}
\newcommand{\eqand}{\quad\text{and}\quad}
\newcommand{\eqor}{\quad\text{or}\quad}
\newcommand{\eqwith}{\quad\text{and}\quad}
\newcommand{\inv}{^{-1}}
\newcommand{\veci}[1]{#1_1,\ldots,#1_n}
\newcommand{\var}{\delta}
\newcommand{\Var}{\Delta}
\newcommand{\eps}{\epsilon}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\Norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\Abs}[1]{\left|#1\right|}
\newcommand{\dabr}[1]{\left\langle\!\left\langle #1 \right\rangle\!\right\rangle}
\newcommand{\dabrn}[1]{\langle\!\langle #1 \rangle\!\rangle}
\newcommand{\idxsep}{\,}
$
Equipping a vector space with an inner product
results in a natural isomorphism $\CV\to\CV^\ast$, where
the metric tensor can be interpreted as the linear mapping $\Bg:\CV\to\CV^\ast$
and its inverse $\Bg\inv:\CV^\ast\to\CV$.
Notation: Given two real vector spaces $\CV$ and $\CW$, we denote their inner products
as \(\dabrn{\cdot,\cdot}_{\CV}\) and \(\dabrn{\cdot,\cdot}_{\CW}\) respectively.
Given vectors $\Bv\in\CV$ and $\Bw\in\CW$, we define their lengths as
\[\begin{equation}
\Norm{\Bv}_\CV = \sqrt{\dabrn{\Bv,\Bv}_\CV}
\eqand
\Norm{\Bw}_\CW = \sqrt{\dabrn{\Bw,\Bw}_\CW}.
\end{equation}\]
Regarding $\CV$ and $\CW$,
their bases are denoted $\cbrn{\BE_A}$ and $\cbrn{\Be_a}$,
their dual bases are denoted $\cbrn{\BE^A}$ and $\cbrn{\Be^a}$,
their metrics are denoted $\BG$ and $\Bg$ with the components
\(G_{AB}=\dabrn{\BE_A,\BE_B}_\CV\) and \(g_{ab}=\dabrn{\Be_a,\Be_b}_\CW\),
respectively. Here, the indices pertaining to $\CV$ are uppercase
$(ABC\dots)$ and the indices pertaining to $\CW$ are lowercase
$(abc\dots)$.
Definition: Let $\BP:\CV\to\CW$ be a linear mapping. Then the transpose ,
or adjoint of $\BP$, written $\BP\tra$, is the linear mapping
\[\begin{equation}
\boxed{
\BP\tra: \CW\to\CV
\quad\text{such that}\quad
\dabrn{\Bv,\BP\tra\Bw}_\CV = \dabrn{\BP\Bv,\Bw}_\CW
}
\end{equation}\]
for all $\Bv\in\CV$ and $\Bw\in\CW$. Carrying out the products,
\[\begin{equation}
G_{BA} v^B (P\tra){}^{A}{}_{d} w^d = g_{ab} P{}^{b}{}_{C}v^Cw^a.
\end{equation}\]
For arbitrary $\Bv$ and $\Bw$,
\[\begin{equation}
G_{BA} (P\tra){}^{A}{}_{a} = g_{ab} P{}^{b}{}_{A}
\end{equation}\]
from which we can obtain the components of the transpose as
\[\begin{equation}
\boxed{
(P\tra){}^{A}{}_{a} = g_{ab} P{}^{b}{}_{B} G^{AB}
\eqwith
\BP\tra = (P\tra){}^{A}{}_{a} \BE_A\dyd\Be^a
.
}
\end{equation}\]
If $\BB:\CV\to\CV$ is a linear mapping,
it is called symmetric if $\BB=\BB\tra$.
Definition: Let $\BP:\CV\to\CW$ be a linear mapping. Then the dual of $\BP$
is a metric independent mapping
\[\begin{equation}
\boxed{
\BP^\ast: \CW^\ast\to\CV^\ast
\quad\text{such that}\quad
\abrn{\Bv,\BP^\ast\Bbeta}_\CV = \abrn{\BP\Bv,\Bbeta}_\CW
}
\end{equation}\]
defined through natural pairings for all
$\Bv\in\CV$ and $\Bbeta\in\CW^\ast$.
Carrying out the products,
\[\begin{equation}
v^A (P^\ast){}_{A}{}^{a} \beta_a
= P{}^{b}{}_{B} v^B \beta_b.
\end{equation}\]
For arbitrary $\Bv$ and $\Bbeta$, we obtain the components of the dual mapping as
\[\begin{equation}
\boxed{
(P^\ast){}_{A}{}^{a}
= P{}^{a}{}_{A}
\eqwith
\BP^\ast = (P^\ast){}_{A}{}^{a} \BE^A\dyd\Be_a
= P{}^{a}{}_{A} \BE^A\dyd\Be_a
.
}
\end{equation}\]
To fully appreciate the symmetry that originates from the duality, we can think
of not just the mappings between $\CV$ and $\CW$, but also between their dual
spaces.
To this end we can enumerate four mappings corresponding to
$\cbr{\CV,\CV^\ast}\to\cbr{\CW,\CW^\ast}$
and their duals, corresponding to
$\cbr{\CW,\CW^\ast}\to\cbr{\CV,\CV^\ast}$. Their definitions can be found in
the table below.
Mappings
$P^a_{\idxsep A}=\BP(\Be^a,\BE_A)$
$\BP = P^{a}_{\idxsep A}\, \Be_a \dyd \BE^A$
$Q_{aA}=\BQ(\Be_a,\BE_A)$
$\BQ = Q_{aA}\, \Be^a \dyd \BE^A$
$R^{aA}=\BR(\Be^a,\BE^A)$
$\BR = R^{aA}\, \Be_a \dyd \BE_A$
$S_a^{\idxsep A}=\BS(\Be_a,\BE^A)$
$\BS = S_{a}^{\idxsep A}\, \Be^a \dyd \BE_A$
$\begin{aligned}
\Bv &\mapsto \BP(\Be^a,\Bv) \Be_a \\
&= \BP\Bv \\
v^A\BE_A &\mapsto P^a_{\idxsep A} v^A \Be_a
\end{aligned}$
$\begin{aligned}
\Bv &\mapsto \BQ(\Be_a,\Bv) \Be^a \\
&= \BQ\Bv \\
v^A\BE_A &\mapsto Q_{aA} v^A \Be^a
\end{aligned}$
$\begin{aligned}
\Balpha &\mapsto \BR(\Be^a,\Balpha) \Be_a \\
&= \BR\Balpha\tra \\
\alpha_A \BE^A &\mapsto R^{aA} \alpha_A \Be_a
\end{aligned}$
$\begin{aligned}
\Balpha &\mapsto \BS(\Be_a,\Balpha) \Be^a \\
&= \BS\Balpha\tra \\
\alpha_A \BE^A &\mapsto S_a^{\idxsep A} \alpha_A \Be^a
\end{aligned}$
$\begin{aligned}
(\Bbeta,\Bv) &\mapsto \BP(\Bbeta,\Bv) \\
&=\Bbeta\BP\Bv \\
&= \beta_a P^{a}_{\idxsep A} v^A
\end{aligned}$
$\begin{aligned}
(\Bw,\Bv) &\mapsto \BQ(\Bw,\Bv) \\
&= \Bw\tra\BQ\Bv \\
&= w^a Q_{aA} v^A
\end{aligned}$
$\begin{aligned}
(\Bbeta,\Balpha) &\mapsto \BR(\Bbeta,\Balpha) \\
&= \Bbeta\BR\Balpha\tra \\
&= \beta_a R^{aA} \alpha_A
\end{aligned}$
$\begin{aligned}
(\Bw,\Balpha) &\mapsto \BS(\Bw,\Balpha) \\
&= \Bw\tra\BS\Balpha\tra \\
&= w^a S_a^{\idxsep A} \alpha_A
\end{aligned}$
Duals
$P^{\ast \, a}_A=\BP^\ast(\BE_A,\Be^a)$
$\BP^\ast = P^{\ast \, a}_A \, \BE^A \dyd \Be_a$
$Q^\ast_{Aa}=\BQ^\ast(\BE_A,\Be_a)$
$\BQ^\ast = Q^\ast_{Aa}\, \BE^A \dyd \Be^a$
$R^{\ast Aa}=\BR^\ast(\BE^A,\Be^a)$
$\BR^\ast = R^{\ast Aa}\, \BE_A \dyd \Be_a$
$S^{\ast A}{}_{a}=\BS^\ast(\BE^A,\Be_a)$
$\BS^\ast = S^{\ast A}{}_{a}\, \BE_A \dyd \Be^a$
$\begin{aligned}
\Bbeta &\mapsto \BP^\ast(\BE_A,\Bbeta) \BE^A \\
&= \BP^\ast\Bbeta\tra \\
\beta_a\Be^a &\mapsto P^{\ast \, a}_A \beta_a \BE^A
\end{aligned}$
$\begin{aligned}
\Bw &\mapsto \BQ^\ast(\BE_A,\Bw) \BE^A \\
&= \BQ^\ast\Bw \\
w^a\Be_a &\mapsto Q^\ast_{Aa} w^a \BE^A
\end{aligned}$
$\begin{aligned}
\Bbeta &\mapsto \BR^\ast(\BE^A,\Bbeta) \BE_A \\
&= \BR^\ast\Bbeta\tra \\
\beta_a\Be^a &\mapsto R^{\ast Aa} w^a \BE_A
\end{aligned}$
$\begin{aligned}
\Bw &\mapsto \BS^\ast(\BE^A,\Bw) \BE_A \\
&= \BS^\ast\Bw \\
w^a\Be_a &\mapsto S^{\ast A}{}_{a} w^a \BE_A
\end{aligned}$
$\begin{aligned}
(\Bv,\Bbeta) &\mapsto \BP^\ast(\Bv,\Bbeta) \\
&= \Bv\tra\BP^\ast\Bbeta\tra \\
&= v^A P^{\ast \, a}_A \beta_a
\end{aligned}$
$\begin{aligned}
(\Bv,\Bw) &\mapsto \BR^\ast(\Bv,\Bw) \\
&= \Bv\tra\BQ^\ast\Bw \\
&= v^A Q^\ast_{Aa} w^a
\end{aligned}$
$\begin{aligned}
(\Balpha,\Bbeta) &\mapsto \BS^\ast(\Balpha,\Bbeta) \\
&= \Balpha\BR^\ast\Bbeta\tra \\
&= \alpha_A R^{\ast Aa} \beta_a
\end{aligned}$
$\begin{aligned}
(\Balpha,\Bw) &\mapsto \BS^\ast(\Balpha,\Bw) \\
&= \Balpha\BS^\ast\Bw \\
&= \alpha_A S^{\ast A}{}_{a} w^a
\end{aligned}$
Tensors $\BP$, $\BQ$, $\BR$ and $\BS$ as linear mappings (top),
and their duals
$\BP^\ast$, $\BQ^\ast$, $\BR^\ast$ and $\BS^\ast$ (bottom).
In the respective tables, the first row displays the tensor spaces, basis
vectors and components of the subsequent mappings,
and the second and third row display the representations of
the tensor as linear and bilinear mappings respectively.
The results of the mappings are given in the mapping, matrix
and index representations respectively.
The mappings are over vectors $\Bv\in\CV$, $\Bw\in\CW$ and one-forms
$\Balpha\in\CV^\ast$, $\Bbeta\in\CW^\ast$.
The commutative diagrams pertaining to these mappings
can be found in the figure below
Commutative diagrams involving
the linear mappings $\BP,\BQ,\BR,\BS$ and
their dual $\BP^\ast,\BQ^\ast,\BR^\ast,\BS^\ast$
based on the metrics $\BG$ and $\Bg$
of $\CV$ and $\CW$.